
1

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

RealTimeAuth (RTA): Dynamic, Continuous Authorization Protocol for
Modern AI Applications

Table of Contents
1. Background: Navigating Stateless Protocols in Dynamic AI Environments

2. Redefining Identity for Modern AI Workflows

– Example: The AI-Enabled User Portal Scenario

3. Why Not Rely Solely on OAuth/OIDC?

– OAuth’s Stateless Roots

– Key Limitations in AI Environments

4. Existing Approaches to “Continuous” Authorization

– Continuous Access Evaluation (CAE/CAEP)

– Shared Signals and Events (SSE) and RISC

– GNAP (Grant Negotiation and Authorization Protocol)

– Commercial IAM Products

5. Introducing RealTimeAuth (RTA): Dynamic, Continuous Authorization Protocol

– Overview

– Core RTA Features

6. Real-Time Authorization: How IdPs, RTA, and AI Agents Interact

– External Identity Providers (IdPs)

– RealTimeAuth (RTA) Framework

– AI-Driven Co-Pilots/Agent Orchestration (Clients via RTASDK)

7. High-Level Flow of RealTimeAuth (RTA)

8. RealTimeAuth (RTA) High-Level Design and Flow

– Diagram Overview

– Flow Explanation

9. Dynamic Authorization Tokens

– What are RTATokens?

– Why Binary RTATokens? Efficiency and Performance

– RTAToken Binary Structure Explained

– RTATokens vs. JWT: Key Comparison

10. Event-Driven Security: Real-Time Enforcement with CAEP and RTA

– Integrating CAEP Events via Shared Signals Framework (SSF) and QUIC

– RTA’s Real-Time Policy Enforcement

– Complementing CAEP with Enhanced RTA Integration

– Broadcasting Events to Multiple AI Agents

11. Low-Latency Transport via QUIC/HTTP/3 and Its Advantages Over WebSockets and
HTTP/2

– Advantages of HTTP/3 (QUIC)

2

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

– Comparison with WebSockets and HTTP/2

12. RealTimeAuth (RTA) Uses Rust for Millisecond Latency and C++-Level Efficiency

– Millisecond-Level Latency

– C++-Level Performance with Memory Safety

– High-Concurrency QUIC Communication

– Lightweight, Secure Cryptography

1. Background: Navigating Stateless Protocols in Dynamic AI
Environments

1.1 Cycling on a Highway

Imagine merging onto a busy freeway on a bicycle, armed only with a static photo of the
traffic conditions taken minutes ago. That snapshot might have been accurate when it was
captured, but it quickly becomes outdated as traffic shifts in real time. Traditional OAuth
and OIDC work similarly: they capture a single moment of user identity and permissions—
suitable for occasional logins and simple API calls—but they fall short in environments that
demand constant updates.

By design, these protocols rely on a stateless model that doesn’t automatically re-check
credentials—unless you explicitly implement token introspection or additional checks. In
AI ecosystems issuing dozens or even hundreds of requests per minute, a once-valid token
quickly goes stale. Without a real-time “video feed” of permissions, these AI agents risk
riding into heavy traffic armed only with an outdated snapshot, exposing them to security
lapses, compliance issues, and missed policy updates.

2. Redefining Identity for Modern AI Workflows

In today’s digital landscape, especially with AI-driven systems, identity is more complex
than just “who you are.” It now also means “who you’re acting on behalf of” and what role
you assume during interactions. This new definition is essential when multiple AI agents or
co-pilots work in concert on behalf of a user, as it enables a clear audit trail and precise
control over privileges.

2.1 Example: The AI-Enabled User Portal Scenario

Imagine an enterprise user portal where an employee accesses critical resources through a
sophisticated AI assistant. When the employee logs in, traditional OAuth/OIDC issues a
token reflecting their identity. However, in this dynamic scenario, the portal employs AI co-
pilots and agents to streamline tasks and make real-time decisions.

3

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

• Delegated Actions by AI Co-Pilots: The primary AI assistant (or co-pilot) receives
a user’s command—such as “update our security policies”—and then delegates
different parts of the job to specialized AI agents. One agent retrieves current policy
documents, another validates compliance requirements, while a third integrates
updated data into the system. All these agents initially use the same user token,
which was issued as a one-time snapshot of identity and permissions.

• Dynamic Role Adaptation: As the task evolves, the employee’s context might
change—for example, escalating from routine policy updates to addressing an
emerging security threat. Each AI agent must reflect this contextual shift
immediately. The traditional static token, however, does not adapt on its own,
causing potential mismatches between assigned tasks and the actual security profile
needed at that moment.

• Maintaining a Clear Audit Trail: When multiple AI agents operate under the same
static token, it becomes challenging to determine precisely who did what. In
regulated environments, pinpointing each agent’s action is crucial for accountability.
The shared, unchanging token blurs this line, reducing transparency and making it
difficult to track compliance for each distinct AI-driven action.

3. Why Not Rely Solely on OAuth/OIDC?

3.1 OAuth’s Stateless Roots

OAuth 2.0 and OIDC were originally designed for discrete, stateless interactions. A user logs
in, receives an access token, and that token is then reused for separate API calls until it
expires—typically in an hour or more. This model has served simple web and mobile apps
well but breaks down in high-frequency environments where privileges must be
continuously revalidated.

3.2 Key Limitations in AI Environments

Static Tokens and Fixed Privileges

• Issue: OAuth tokens are issued with fixed scopes and remain valid until expiration
or manual revocation.

• AI Problem: When a policy change or a shift in the user’s context occurs mid-
session, there is no mechanism to instantly update token privileges. This can leave
AI agents operating with outdated or overly permissive rights.

Lack of Continuous Authorization Evaluation

• Issue: Tokens are validated only at the time of issuance or upon refresh, not on a
continuous basis.

4

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

• AI Problem: In an environment where conditions—such as network status, risk
levels, or user location—change rapidly, a token validated at one point in time
quickly becomes stale.

Inflexible Delegation (On-Behalf-Of Tokens)

• Issue: The OAuth On-Behalf-Of (OBO) flow requires multiple token exchanges and
establishes trust assumptions across each exchange.

• AI Problem: When an AI co-pilot delegates tasks to several specialized agents, using
the same static token complicates accountability. Moreover, if a token in the chain is
compromised or if privileges need to be adjusted for a specific agent, the entire
chain often requires re-issuance, introducing latency and ambiguity in the audit
trail.

Transport Inefficiencies (HTTP/TCP)

• Issue: OAuth typically operates over HTTP/TCP, which involves repeated TLS
handshakes and potential head-of-line blocking.

• AI Problem: Real-time AI systems, processing dozens or hundreds of requests per
minute, cannot afford the additional latency incurred by these transport overheads.

4. Existing Approaches to “Continuous” Authorization

4.1 Continuous Access Evaluation (CAE/CAEP)

The CAEP framework enables event-driven notifications from Identity Providers—such as
“user disabled” or “token compromised”—to shorten the window during which a revoked
token remains valid. However, there are challenges: - Latency: In real-world
implementations, revocation delays can still be measured in minutes. - Scope Limitations:
Notifications are typically confined to specific event types (e.g., account termination). -
Transport Constraints: CAEP usually depends on HTTP-based mechanisms like polling or
subscriptions, which are slower compared to an always-on QUIC/HTTP/3 channel. -
Implementation Complexity: Configuring and securing continuous notifications can
require substantial changes to existing infrastructure.

4.2 Shared Signals and Events (SSE) and RISC

SSE allows Identity Providers to broadcast security events via standardized protocols.
Their challenges include: - Asynchronous Delivery: Alerts are generally sent via HTTP or
webhooks, introducing delays that hinder sub-second re-validation. - Limited Granularity:
They may not capture every nuanced change in risk levels needed for real-time AI actions.

4.3 GNAP (Grant Negotiation and Authorization Protocol)

GNAP rethinks the process of requesting and negotiating access grants to address some
shortcomings of OAuth. Its challenges are: - Token Staticity: Once issued, GNAP tokens
often remain static unless explicitly re-negotiated. - Absence of a Streaming Channel:

https://openid.net/caep/
https://openid.net/sse/
https://openid.net/gnap/

5

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

GNAP does not inherently provide a persistent, streaming connection for continuous, real-
time re-validation. - Instant Revocation Gaps: There is no default mechanism for instant
revocation across every action, making it unsuitable for environments that demand
immediate updates.

4.4 Commercial IAM Products

Enterprise Identity and Access Management (IAM) platforms incorporate features like
short-lived tokens, refresh flows, and partial CAE/SSE mechanisms. For example: - Okta,
Auth0, AWS Cognito, and Microsoft Entra each offer solutions such as short-lived tokens
or continuous evaluation methods. - Microsoft Entra’s Continuous Access Evaluation can
deliver near real-time revocations, but it typically operates within a minute-level window.

Additional Challenges:

• Delegation Ambiguity: Current IAM solutions often struggle to differentiate
between the original user’s identity and the multiple roles assumed by various AI
agents working on behalf of that user.

• Persistent Channel Deficiency: None of these products offer the millisecond-level,
persistent, low-latency channels necessary for continuous re-validation in dynamic,
multi-agent AI deployments.

• Audit Trail Blurring: When the same token is used across different AI co-pilots and
agents, tracing which agent performed which action becomes challenging, risking
both security and compliance.

5. Introducing RealTimeAuth (RTA): Dynamic, Continuous
Authorization Protocol

5.1 Overview

RealTimeAuth (RTA) is designed to overcome the inherent limitations of traditional OAuth
2.0 and OIDC in dynamic, AI-driven environments. Rather than replacing these established
protocols, RTA enhances their capabilities by introducing a continuously adapting token
known as the RTAToken. Unlike static JWTs, RTATokens reflect real-time context changes
and are tightly bound to persistent QUIC sessions, providing immediate and continuous
evaluation of the authorization state.

Key Characteristics Include:

• Dynamic Tokens:
RTATokens adapt instantly to context changes or revocations, ensuring that tokens
remain current and valid.

• Continuous Evaluation:
Every significant event triggers an immediate policy evaluation through a Policy

https://www.okta.com/
https://auth0.com/
https://aws.amazon.com/cognito/
https://www.microsoft.com/en-us/entra

6

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

Decision Point (PDP), ensuring that tokens always reflect up-to-date security
contexts.

• Event-Driven Security:
Instant updates and revocations are pushed in real time through persistent
communication channels.

• Optimized Low-Latency Transport (QUIC/HTTP/3):
QUIC’s features—including 0-RTT handshakes, multiplexed streams without head-
of-line blocking, and seamless connection migration—provide rapid and reliable
transport critical for continuous authorization.

• Secure Token Binding:
RTATokens are cryptographically bound to their QUIC sessions, effectively
mitigating replay attacks and enhancing overall security.

• Compatibility with Existing IdPs:
RTA seamlessly integrates with existing OAuth 2.0 flows for initial authentication
and utilizes real-time event signals (e.g., CAEP) from external Identity Providers to
ensure continuous alignment with user privileges and risk profiles.

5.2 Core RTA Features

Dynamic & Stateful RTAToken

The RTAToken differs significantly from traditional static tokens by continuously adapting
its privileges to real-time context:

• Real-Time Context Binding:
Tokens immediately reflect any changes to user context, privilege levels, or risk
scores.

• Instant Revocation:
Tokens can be instantly invalidated in response to security incidents or policy
updates, eliminating reliance on token expiry periods.

• Lightweight Binary Format:
The binary structure reduces parsing overhead, enabling high-speed evaluation
suitable for intensive, real-time interactions.

Continuous Authorization Evaluation

RTA ensures ongoing authorization accuracy through continuous context evaluation:

• On-Demand Policy Checks:
Each significant action undergoes real-time verification against the latest security
policies via a PDP.

7

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

• Adaptive Privilege Management:
Privileges dynamically adjust or are revoked instantly in response to evolving
conditions or risk profiles, ensuring up-to-date compliance.

Optimized Transport via QUIC/HTTP/3

To maintain authorization at the speed required by modern AI systems, RTA employs
QUIC/HTTP/3:

• Rapid Connection Establishment:
QUIC’s 0-RTT handshake dramatically reduces latency for session initiation.

• Efficient Multiplexing:
QUIC’s independent multiplexed streams eliminate delays caused by head-of-line
blocking, ensuring parallel authorization evaluations.

• Seamless Network Transition:
QUIC’s inherent connection migration capability maintains continuous authorization
sessions even during network changes (e.g., switching from Wi-Fi to cellular).

Robust Event-Driven Security Architecture

RTA uses event-driven channels to provide real-time security updates:

• Real-Time Event Delivery:
Persistent QUIC-based channels push immediate security context updates, greatly
reducing latency compared to polling-based methods.

• Distributed Updates:
Events such as policy revocations or updates propagate instantly across all
connected systems through integration with distributed event brokers.

Seamless Integration with Identity Providers

RTA complements existing OAuth/OIDC infrastructure by enhancing initial authentication
flows:

• Hybrid OAuth Integration:
Retains familiar OAuth 2.0 workflows while dynamically upgrading sessions via
RTATokens after authentication.

• Real-Time Identity Signals:
Continuously incorporates external security signals (e.g., CAEP events) from Identity
Providers, ensuring that token state consistently aligns with real-time user status
and context.

RealTimeAuth (RTA) represents a significant evolution in authorization protocols,
addressing the millisecond-level, continuous demands of modern AI applications by
combining dynamic token management, persistent low-latency communication, and robust,
event-driven security mechanisms.

8

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

6. Real-Time Authorization: How IdPs, RTA, and AI Agents Interact

The overall design is composed of three distinct parts that work together to deliver
dynamic, continuous authorization:

6.1 External Identity Providers (IdPs)

External Identity Providers, such as Azure AD, Okta, and Google, serve as the initial
authentication gateway. They verify user identities through standard OAuth/OIDC
protocols, enabling secure identity proofing and consent management.

Key Responsibilities:

• Initial Authentication:
OAuth/OIDC login, identity verification, and consent management.

• Event Emission:
CAEP-compliant security event notifications (via HTTPS POST).

6.2 RealTimeAuth (RTA) Framework

The RealTimeAuth (RTA) Framework provides dynamic, continuous authorization. After
initial authentication by external IdPs, it manages RTATokens in real time and ensures
immediate enforcement of security policies.

Key Responsibilities:

• Token Management:

– Validate OAuth tokens and exchange them for dynamic RTATokens.

– Continuously evaluate and update token context based on live policy
changes.

• Policy Enforcement:
Integrate with Policy Decision Points (PDP) for real-time security validation.

• Event Handling & CAEP Compatibility:

– Dedicated Webhook Receiver for receiving CAEP events over HTTPS.

– Integrated QUIC Client supporting low-latency CAEP event delivery.

– Internal Event Broker (e.g., Redis Pub/Sub, SSE) for rapid policy and
revocation event distribution.

9

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

6.3 AI-Driven Co-Pilots/Agent Orchestration (Clients via RTASDK)

AI-driven co-pilots and agent orchestration systems utilize the RTASDK (QUIC) for
seamless integration with the RTA Framework. This SDK simplifies maintaining
continuous, real-time authorization sessions.

Key Responsibilities:

• Initial OAuth Authentication:
Perform standard OAuth authentication with external IdPs.

• RTAToken Acquisition:
Obtain continuously validated RTATokens from the RTA Framework using the
RTASDK.

• Persistent QUIC Sessions:
Utilize the RTASDK to maintain real-time, low-latency QUIC connections with RTA.

• Instantaneous Adaptation:
React immediately to real-time policy changes, revocations, or scope adjustments
delivered via the RTASDK.

7. High-Level Flow of RealTimeAuth (RTA)

RealTimeAuth (RTA) streamlines continuous, dynamic authorization by building on
existing OAuth flows and introducing a specialized RTA Custom Grant Type that enables
seamless token exchange and continuous evaluation of privileges. Here’s a detailed
overview of how this enhanced flow operates in dynamic, AI-driven environments:

7.1 Initial Authentication with External IdP

The user authenticates using a standard OAuth 2.0/OIDC flow with an external Identity
Provider (IdP). An OAuth token is issued by the IdP, establishing the user’s identity and
initial permissions.

7.2 Token Exchange via RTA Custom Grant Type

Upon receiving the IdP-issued OAuth token, the AI Co-Pilot or orchestration layer initiates a
token exchange using the specialized RTA Custom Grant Type
(urn:ietf:params:oauth:grant-type:rta_token_exchange) when interacting with the
RTA server. This specialized grant includes the original OAuth token issued by the external
IdP, agent-specific metadata for precise auditability, and a nonce or cryptographic
challenge for replay attack protection. The RTA server validates the incoming OAuth token
through introspection with the external IdP and issues a dynamic RTAToken that binds
directly to the agent’s context and QUIC session.

10

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

7.3 Token Binding and Persistent QUIC Session Establishment

The dynamically issued RTAToken is tightly bound to a persistent QUIC session established
between the AI agent and the RTA server. This cryptographic binding provides enhanced
security against replay attacks and ensures that the token continuously reflects the agent’s
current context and security posture.

7.4 Continuous Authorization Evaluation

Each significant action performed by AI agents triggers an immediate policy check via the
integrated Policy Decision Point (PDP). Real-time policy evaluation ensures that tokens
remain consistently aligned with current permissions, compliance requirements, and risk
profiles.

7.5 Real-Time, Event-Driven Updates and Revocation

The RTA framework continuously listens for security events—such as revocations or policy
changes—delivered through persistent QUIC-based channels and internal Event Brokers
(e.g., Redis Pub/Sub, Server-Sent Events). Upon receiving events, the RTA server instantly
updates or revokes RTATokens across all active sessions, ensuring real-time enforcement.

7.6 Seamless Integration with Backend Services

AI co-pilots and orchestration layers, empowered by continuously validated RTATokens,
communicate securely with backend services through the established QUIC channels. Real-
time authorization is maintained, and unauthorized actions are proactively blocked.

By combining initial OAuth authentication with continuous real-time evaluation, token
binding to persistent QUIC sessions, and an event-driven update mechanism,
RealTimeAuth (RTA) delivers a robust, low-latency solution tailored for the dynamic
demands of modern, AI-driven multi-agent environments.

8. RealTimeAuth (RTA) High-Level Design and Flow

Below is the high-level design and flow of RealTimeAuth (RTA) in an AI-driven
environment. This design starts with a Web Portal user login and then shows how the
authentication flows from the AI Co-Pilot through to the AI Agents, with the RTA Server
managing dynamic, continuous authorization in real time. The diagram also illustrates the
integration of the RTA Server with an external Identity Provider (IdP) for token validation,
and with an Event Broker/Policy Decision Point (PDP) to perform real-time policy checks.

RTA Sequence Diagram

11

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

8.1 Diagram Overview
• User Login: Initiated through a Web Portal.

• Token Exchange: The AI Co-Pilot transfers the OAuth token to the AI Agents, which
then exchange it for delegated RTATokens.

• Persistent Connection: AI Agents establish a persistent QUIC session with the RTA
Server.

• Real-Time Policy Updates: The RTA Server receives immediate updates from an
external Event Broker and pushes these to connected AI Agents.

• Continuous Authorization: Agents use updated tokens for real-time actions.

• Response Aggregation: The AI Co-Pilot aggregates agent responses and presents
the final output via the Web Portal.

8.2 Flow Explanation

8.2.1 User Authentication via Web Portal

• Login Process:
The user logs in via a standard OAuth/OIDC flow.

• Token Issuance:
An external Identity Provider (IdP) issues an OAuth token, which the Web Portal
forwards to the AI Co-Pilot.

8.2.2 Delegated RTAToken Exchange

• Token Relay:
The AI Co-Pilot sends the OAuth token to each AI Agent.

• Exchange Process:
Each AI Agent exchanges the OAuth token for a unique, delegated RTAToken with
the RTA Server.

• Token Validation:
The RTA Server validates the OAuth token via introspection with the IdP.

12

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

• Auditability:
Agent-specific metadata is embedded in each RTAToken for audit purposes.

8.2.3 Persistent QUIC Session Establishment

• Connection Setup:
Upon token issuance, each AI Agent establishes a persistent QUIC connection with
the RTA Server.

• Immediate Communication:
This persistent connection allows for bi-directional, real-time communication.

8.2.4 Event-Driven Policy Updates via Event Broker

• Real-Time Subscription:
The RTA Server subscribes to an Event Broker to listen for external events.

• Event Sources:

– IdP Revocation: Events such as IdP revocation via CAEP.

– Policy Changes: Policy updates from a Policy Decision Point (PDP).

• Internal Synchronization:
These events ensure that the internal context of the RTA Server remains updated in
real time.

8.2.5 Instantaneous Policy Update Push (RTA → AI Agents)

• Immediate Updates:
When the RTA Server receives an external event signaling a policy or state change, it
pushes updates directly to all affected AI Agents.

• Continuous Delivery:
Updates are sent via the established QUIC sessions regardless of whether the agents
are actively sending requests.

8.2.6 Continuous Real-Time Authorization

• Action Execution:
AI Agents perform actions using their freshly updated RTATokens.

• Real-Time Evaluation:
The RTA Server continuously evaluates and authorizes each request, ensuring the
tokens reflect the current state of policies.

8.2.7 Aggregated Response Delivery

• Response Flow:
AI Agents send individual responses back to the AI Co-Pilot.

• Final Output:
The AI Co-Pilot aggregates the responses and presents the final result to the user
through the Web Portal.

13

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

9. Dynamic Authorization Tokens

RTATokens are purpose-built dynamic tokens used within the RealTimeAuth (RTA)
framework to enable continuous, real-time authorization for AI-driven multi-agent
environments. Unlike traditional static tokens (such as JWTs), RTATokens are context-
bound, continuously evaluated, and capable of instantaneous revocation or update.

9.1 What are RTATokens?
RTA Sequence Diagram

RTATokens are stateful authorization tokens explicitly designed for dynamic, continuously
changing contexts. They do not rely on embedded static claims for offline validation.
Instead, every RTAToken must always be revalidated against the current real-time
authorization state managed by the RTA Server.

Core Properties:

• Dynamically Evaluated:
RTATokens are validated at every request against the current, up-to-the-second
policy context.

• Instantly Revocable:
Policy updates or revocation events instantly invalidate outdated tokens, removing
reliance on cumbersome denylist approaches.

• Context Bound:
Each RTAToken includes metadata (e.g., a ContextHash) that directly reflects the
current policy or security context—such as user risk level, geographic location, or
compliance status. Changes to any contextual attribute trigger immediate token
invalidation or updates.

14

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

9.2 Why Binary RTATokens? Efficiency and Performance

Unlike JSON Web Tokens (JWTs)—typically encoded as text and parsed from base64-
encoded JSON—RTATokens use a structured binary format. This design provides several
crucial efficiency benefits:

Efficiency Advantages of Binary Encoding:

• Faster Parsing:
Binary tokens eliminate JSON parsing overhead. Fixed-size fields ensure rapid
indexing and extraction without the complexity of parsing variable-length strings or
JSON structures.

• Reduced Network Overhead:
Binary encoding results in significantly smaller token sizes compared to text-based
tokens. The reduced payload size leads directly to lower latency and improved
throughput, which is essential for high-frequency AI interactions.

• Improved Security and Reliability:
Fixed binary structures minimize parsing errors and reduce the risk of injection
attacks common with text-based formats.

9.3 RTAToken Binary Structure Explained

Below is a representative structure of an RTAToken, highlighting its compact, binary-
encoded components:

RTAToken
TokenHeader
(8 bytes)

SessionID
(16 bytes)

ContextHash
(32 bytes)

Timestamp
(8 bytes)

Signature
(32 bytes)

Field Size Purpose and Benefits

TokenHeader 8 bytes Contains version and flag information for quick parsing.

SessionID 16
bytes

Uniquely binds the token to a specific QUIC session, preventing
replay attacks.

ContextHash 32
bytes

Represents the current policy context. Any change invalidates
prior tokens immediately.

Timestamp 8 bytes Embeds issuance time, preventing token replay or reuse
beyond its freshness window.

Signature 32
bytes

Cryptographic signature (e.g., Ed25519) ensuring token
authenticity and integrity.

This carefully optimized binary structure ensures rapid validation, minimal parsing
overhead, and secure operations.

15

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

9.4 RTATokens vs. JWT: Key Comparison

Here’s a concise comparison highlighting why RTATokens outperform traditional JWTs in
dynamic, multi-agent scenarios:

Aspect Traditional JWT Tokens RTATokens (Binary)

Validation
Model

Static, offline validation using
embedded claims

Dynamic, real-time validation
against live server context

Revocation
Handling

Complex denylist or long expiry
times

Instantaneous global revocation
via context updates

Context
Sensitivity

Static claims, no context-based
automatic revocation

Context-bound; auto-invalidation
upon context changes

Token Format Text-based (JSON/Base64),
larger size, slower parsing

Binary format, smaller size, faster
parsing & processing

Security Higher risk of parsing-related
vulnerabilities

Secure, fixed-size binary fields
reduce parsing risks

Performance
Impact

Higher latency due to parsing
overhead

10. Event-Driven Security: Real-Time Enforcement with CAEP and RTA

10.1 Integrating CAEP Events via Shared Signals Framework (SSF) and QUIC
RTA Event Flow

RTA Event Flow

External Identity Providers (IdPs) and Policy Decision Points (PDPs) (e.g., Okta, Azure AD,
Google) emit standardized Security Event Tokens (SETs) via the Shared Signals Framework
(SSF). RTA handles these events using two complementary mechanisms:

• SSF-Compatible HTTPS Endpoint:
RTA exposes a dedicated endpoint (e.g.,
https://events.realtimeauth.empowerid.com/caep) to receive CAEP events via
HTTPS POST. This endpoint securely receives and validates incoming events.

• QUIC Client Integration:
A QUIC Client, integrated directly at the PDP/IdP level, ensures that CAEP events are
transmitted with low latency and high reliability. This client establishes persistent
QUIC connections to RTA, enabling real-time, bidirectional communication that
outperforms conventional HTTPS.

Event Flow: - Emission:
External IdPs/PDPs send CAEP events using either HTTPS POST or direct QUIC
transmissions. - Reception:
The SSF-compatible endpoint and integrated QUIC Client securely receive, validate, and

https://www.okta.com/
https://azure.microsoft.com/en-us/services/active-directory/
https://about.google/

16

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

forward these events. - Internal Publishing:
Validated events are immediately published to an internal real-time Event Hub (e.g., Kafka,
Redis Pub/Sub, Azure Event Hub) for further processing.

10.2 RTA’s Real-Time Policy Enforcement

When CAEP events are received from the internal Event Hub via HTTPS or QUIC channels,
RTA immediately enforces security changes by:

• Updating the Policy Context:
RTA recalculates its internal policy context and updates the embedded ContextHash
in all active RTATokens, reflecting the most current security information.

• Instant Token Invalidation:
Tokens carrying outdated ContextHashes are invalidated immediately, ensuring that
any new policy changes or revocation events are enforced without delay.

• Immediate Agent Notification:
Using persistent QUIC connections, RTA proactively pushes these updated policies
to all connected AI agents—even if they are not actively sending requests—
achieving zero-wait enforcement.

10.3 Complementing CAEP with Enhanced RTA Integration

The combination of CAEP and RTA, strengthened by QUIC Client integration, provides
robust real-time security enforcement:

• CAEP:
Facilitates standardized external communication of security events from IdPs and
PDPs.

• RTA with QUIC Integration:
Ensures immediate enforcement of CAEP events by dynamically updating policy
contexts and instantly broadcasting changes to all AI agents via low-latency QUIC
connections.

• Overall Benefit:
This integrated approach guarantees comprehensive, real-time security by bridging
standardized event communication with instantaneous policy enforcement across
dynamic, AI-driven environments.

17

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

10.4 Broadcasting Events to Multiple AI Agents

RTA efficiently disseminates security policy updates and context changes across all
connected AI agents:

• Persistent QUIC Connections:
AI agents maintain always-on QUIC connections with RTA, enabling prompt, real-
time communication.

• Instant Policy Synchronization:
Upon receipt of CAEP events, RTA immediately broadcasts the updated policies
through these connections.

• Zero-Wait Enforcement:
AI agents instantly adapt their operations based on the enforced policies,
eliminating delays associated with manual checks or periodic synchronization.

11. Low-Latency Transport via QUIC/HTTP/3 and Its Advantages Over
WebSockets and HTTP/2

RTA leverages the advanced features of QUIC/HTTP/3 to deliver dynamic, continuous
authorization in high-frequency, AI-driven environments. The use of HTTP/3 brings
several key improvements compared to traditional transport protocols such as WebSockets
and HTTP/2.

11.1 Advantages of HTTP/3 (QUIC)
• Rapid Session Establishment:

HTTP/3 utilizes a 0-RTT handshake, drastically reducing connection setup time.
This near-instant session initiation is critical for environments where AI agents
require immediate authorization and token updates.

• Multiplexed Streams Without Head-of-Line Blocking:
Unlike HTTP/2—which, although capable of multiplexing, can suffer from head-of-
line blocking—HTTP/3 allows simultaneous independent streams. This prevents
any single stream from delaying others, ensuring smooth, concurrent processing of
authorization checks and token updates.

• Seamless Connection Migration:
QUIC supports connection migration across different network interfaces (for
example, switching between Wi-Fi and cellular) without dropping the connection or
requiring a new handshake. This enables RTA to maintain persistent sessions even
when network conditions change, ensuring continuous real-time updates.

• Enhanced Security and Reduced Overhead:
HTTP/3 integrates TLS 1.3 directly into its transport layer, reducing overhead and
improving security by minimizing round-trip times. The streamlined security model

18

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

and built-in encryption contribute to a more resilient and efficient authorization
system.

11.2 Comparison with WebSockets and HTTP/2
Feature WebSockets HTTP/2 HTTP/3 (QUIC)

Connection
Setup

Requires a separate
handshake over
HTTP/TCP, adding
latency.

Uses an HTTP/2
handshake but is still
subject to TCP’s
limitations.

0-RTT handshake
significantly reduces
connection setup
latency.

Multiplexing Limited multiplexing;
prone to blocking if
many connections
compete.

Multiplexing
available, but can
suffer from head-of-
line blocking.

True multiplexing
without head-of-line
blocking.

Connection
Migration

Not natively
supported; requires
reconnection.

Limited support for
migration; may
disrupt ongoing
streams.

Seamless migration
across networks
maintains session
continuity.

Security
Integration

Secured using TLS
over TCP.

Secured via TLS with
additional overhead
due to TCP
inefficiencies.

Integrated TLS 1.3
within the transport
layer minimizes
overhead.

Performance
Impact

Additional overhead
leads to increased
latency in high-
frequency use.

Improved over TCP
but still impacted by
TCP’s inherent
inefficiencies.

Minimal latency,
optimized for real-time
interactions in dynamic
environments.

By utilizing QUIC/HTTP/3, RTA achieves minimal latency and robust, persistent
communication channels, ensuring that real-time authorization updates are delivered
seamlessly. This makes it a superior choice over WebSockets and HTTP/2 for AI-driven
environments where continuous, low-latency performance is critical.

12. RealTimeAuth (RTA) Uses Rust for Millisecond Latency and C++-
Level Efficiency

RealTimeAuth (RTA) leverages Rust for its powerful combination of millisecond-level
latency, C++-like performance, memory safety, and secure, scalable concurrency—ideal for
real-time, continuous authorization in high-performance, AI-driven environments.

12.1 Millisecond-Level Latency
• Zero-Overhead Abstractions:

Rust’s zero-overhead abstractions enable authorization decisions within
milliseconds.

19

© 2025 Hammad Abbasi hello@hammadabbasi.com.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

• Rapid Enforcement:
Low-latency is critical for the rapid, real-time security enforcement required in
dynamic AI scenarios.

12.2 C++-Level Performance with Memory Safety
• High-Performance Computing:

Rust matches C++ performance without incurring typical C++ vulnerabilities such as
buffer overflows or memory leaks.

• Predictable Memory Management:
Rust’s ownership model provides predictable memory management, enhancing
system reliability and security.

12.3 High-Concurrency QUIC Communication
• Efficient Asynchronous Ecosystem:

Utilizing Rust’s asynchronous ecosystem (e.g., Tokio) and QUIC libraries (e.g.,
Quinn), RTA can efficiently manage thousands of simultaneous QUIC connections.

• Seamless Scalability:
RTA scales seamlessly, ensuring stable performance even as the number of
connected AI agents grows.

12.4 Lightweight, Secure Cryptography
• Robust Cryptographic Libraries:

Rust’s secure cryptographic libraries (such as Ring and RustCrypto) enable efficient
cryptographic operations for RTAToken signing and verification.

• Low-Latency Security:
Rapid token signing and verification maintain minimal latency while ensuring
maximum security.

Using Rust, RealTimeAuth (RTA) achieves unmatched performance, memory safety,
concurrency, and cryptographic security—making it perfectly suited to meet the real-time
authorization demands of modern, multi-agent AI environments.

