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RealTimeAuth (RTA): Dynamic, Continuous Authorization Protocol for 
Modern AI Applications 
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1. Background: Navigating Stateless Protocols in Dynamic AI 
Environments 

1.1 Cycling on a Highway 

Imagine merging onto a busy freeway on a bicycle, armed only with a static photo of the 
traffic conditions taken minutes ago. That snapshot might have been accurate when it was 
captured, but it quickly becomes outdated as traffic shifts in real time. Traditional OAuth 
and OIDC work similarly: they capture a single moment of user identity and permissions—
suitable for occasional logins and simple API calls—but they fall short in environments that 
demand constant updates. 

By design, these protocols rely on a stateless model that doesn’t automatically re-check 
credentials—unless you explicitly implement token introspection or additional checks. In 
AI ecosystems issuing dozens or even hundreds of requests per minute, a once-valid token 
quickly goes stale. Without a real-time “video feed” of permissions, these AI agents risk 
riding into heavy traffic armed only with an outdated snapshot, exposing them to security 
lapses, compliance issues, and missed policy updates. 

 

2. Redefining Identity for Modern AI Workflows 

In today’s digital landscape, especially with AI-driven systems, identity is more complex 
than just “who you are.” It now also means “who you’re acting on behalf of” and what role 
you assume during interactions. This new definition is essential when multiple AI agents or 
co-pilots work in concert on behalf of a user, as it enables a clear audit trail and precise 
control over privileges. 

2.1 Example: The AI-Enabled User Portal Scenario 

Imagine an enterprise user portal where an employee accesses critical resources through a 
sophisticated AI assistant. When the employee logs in, traditional OAuth/OIDC issues a 
token reflecting their identity. However, in this dynamic scenario, the portal employs AI co-
pilots and agents to streamline tasks and make real-time decisions. 
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• Delegated Actions by AI Co-Pilots: The primary AI assistant (or co-pilot) receives 
a user’s command—such as “update our security policies”—and then delegates 
different parts of the job to specialized AI agents. One agent retrieves current policy 
documents, another validates compliance requirements, while a third integrates 
updated data into the system. All these agents initially use the same user token, 
which was issued as a one-time snapshot of identity and permissions. 

• Dynamic Role Adaptation: As the task evolves, the employee’s context might 
change—for example, escalating from routine policy updates to addressing an 
emerging security threat. Each AI agent must reflect this contextual shift 
immediately. The traditional static token, however, does not adapt on its own, 
causing potential mismatches between assigned tasks and the actual security profile 
needed at that moment. 

• Maintaining a Clear Audit Trail: When multiple AI agents operate under the same 
static token, it becomes challenging to determine precisely who did what. In 
regulated environments, pinpointing each agent’s action is crucial for accountability. 
The shared, unchanging token blurs this line, reducing transparency and making it 
difficult to track compliance for each distinct AI-driven action. 

 

3. Why Not Rely Solely on OAuth/OIDC? 

3.1 OAuth’s Stateless Roots 

OAuth 2.0 and OIDC were originally designed for discrete, stateless interactions. A user logs 
in, receives an access token, and that token is then reused for separate API calls until it 
expires—typically in an hour or more. This model has served simple web and mobile apps 
well but breaks down in high-frequency environments where privileges must be 
continuously revalidated. 

3.2 Key Limitations in AI Environments 

Static Tokens and Fixed Privileges 

• Issue: OAuth tokens are issued with fixed scopes and remain valid until expiration 
or manual revocation. 

• AI Problem: When a policy change or a shift in the user’s context occurs mid-
session, there is no mechanism to instantly update token privileges. This can leave 
AI agents operating with outdated or overly permissive rights. 

Lack of Continuous Authorization Evaluation 

• Issue: Tokens are validated only at the time of issuance or upon refresh, not on a 
continuous basis. 
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• AI Problem: In an environment where conditions—such as network status, risk 
levels, or user location—change rapidly, a token validated at one point in time 
quickly becomes stale. 

Inflexible Delegation (On-Behalf-Of Tokens) 

• Issue: The OAuth On-Behalf-Of (OBO) flow requires multiple token exchanges and 
establishes trust assumptions across each exchange. 

• AI Problem: When an AI co-pilot delegates tasks to several specialized agents, using 
the same static token complicates accountability. Moreover, if a token in the chain is 
compromised or if privileges need to be adjusted for a specific agent, the entire 
chain often requires re-issuance, introducing latency and ambiguity in the audit 
trail. 

Transport Inefficiencies (HTTP/TCP) 

• Issue: OAuth typically operates over HTTP/TCP, which involves repeated TLS 
handshakes and potential head-of-line blocking. 

• AI Problem: Real-time AI systems, processing dozens or hundreds of requests per 
minute, cannot afford the additional latency incurred by these transport overheads. 

 

4. Existing Approaches to “Continuous” Authorization 

4.1 Continuous Access Evaluation (CAE/CAEP) 

The CAEP framework enables event-driven notifications from Identity Providers—such as 
“user disabled” or “token compromised”—to shorten the window during which a revoked 
token remains valid. However, there are challenges: - Latency: In real-world 
implementations, revocation delays can still be measured in minutes. - Scope Limitations: 
Notifications are typically confined to specific event types (e.g., account termination). - 
Transport Constraints: CAEP usually depends on HTTP-based mechanisms like polling or 
subscriptions, which are slower compared to an always-on QUIC/HTTP/3 channel. - 
Implementation Complexity: Configuring and securing continuous notifications can 
require substantial changes to existing infrastructure. 

4.2 Shared Signals and Events (SSE) and RISC 

SSE allows Identity Providers to broadcast security events via standardized protocols. 
Their challenges include: - Asynchronous Delivery: Alerts are generally sent via HTTP or 
webhooks, introducing delays that hinder sub-second re-validation. - Limited Granularity: 
They may not capture every nuanced change in risk levels needed for real-time AI actions. 

4.3 GNAP (Grant Negotiation and Authorization Protocol) 

GNAP rethinks the process of requesting and negotiating access grants to address some 
shortcomings of OAuth. Its challenges are: - Token Staticity: Once issued, GNAP tokens 
often remain static unless explicitly re-negotiated. - Absence of a Streaming Channel: 

https://openid.net/caep/
https://openid.net/sse/
https://openid.net/gnap/
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GNAP does not inherently provide a persistent, streaming connection for continuous, real-
time re-validation. - Instant Revocation Gaps: There is no default mechanism for instant 
revocation across every action, making it unsuitable for environments that demand 
immediate updates. 

4.4 Commercial IAM Products 

Enterprise Identity and Access Management (IAM) platforms incorporate features like 
short-lived tokens, refresh flows, and partial CAE/SSE mechanisms. For example: - Okta, 
Auth0, AWS Cognito, and Microsoft Entra each offer solutions such as short-lived tokens 
or continuous evaluation methods. - Microsoft Entra’s Continuous Access Evaluation can 
deliver near real-time revocations, but it typically operates within a minute-level window. 

Additional Challenges: 

• Delegation Ambiguity: Current IAM solutions often struggle to differentiate 
between the original user’s identity and the multiple roles assumed by various AI 
agents working on behalf of that user. 

• Persistent Channel Deficiency: None of these products offer the millisecond-level, 
persistent, low-latency channels necessary for continuous re-validation in dynamic, 
multi-agent AI deployments. 

• Audit Trail Blurring: When the same token is used across different AI co-pilots and 
agents, tracing which agent performed which action becomes challenging, risking 
both security and compliance. 

 

5. Introducing RealTimeAuth (RTA): Dynamic, Continuous 
Authorization Protocol 

5.1 Overview 

RealTimeAuth (RTA) is designed to overcome the inherent limitations of traditional OAuth 
2.0 and OIDC in dynamic, AI-driven environments. Rather than replacing these established 
protocols, RTA enhances their capabilities by introducing a continuously adapting token 
known as the RTAToken. Unlike static JWTs, RTATokens reflect real-time context changes 
and are tightly bound to persistent QUIC sessions, providing immediate and continuous 
evaluation of the authorization state. 

Key Characteristics Include: 

• Dynamic Tokens: 
RTATokens adapt instantly to context changes or revocations, ensuring that tokens 
remain current and valid. 

• Continuous Evaluation: 
Every significant event triggers an immediate policy evaluation through a Policy 

https://www.okta.com/
https://auth0.com/
https://aws.amazon.com/cognito/
https://www.microsoft.com/en-us/entra
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Decision Point (PDP), ensuring that tokens always reflect up-to-date security 
contexts. 

• Event-Driven Security: 
Instant updates and revocations are pushed in real time through persistent 
communication channels. 

• Optimized Low-Latency Transport (QUIC/HTTP/3): 
QUIC’s features—including 0-RTT handshakes, multiplexed streams without head-
of-line blocking, and seamless connection migration—provide rapid and reliable 
transport critical for continuous authorization. 

• Secure Token Binding: 
RTATokens are cryptographically bound to their QUIC sessions, effectively 
mitigating replay attacks and enhancing overall security. 

• Compatibility with Existing IdPs: 
RTA seamlessly integrates with existing OAuth 2.0 flows for initial authentication 
and utilizes real-time event signals (e.g., CAEP) from external Identity Providers to 
ensure continuous alignment with user privileges and risk profiles. 

5.2 Core RTA Features 

Dynamic & Stateful RTAToken 

The RTAToken differs significantly from traditional static tokens by continuously adapting 
its privileges to real-time context: 

• Real-Time Context Binding: 
Tokens immediately reflect any changes to user context, privilege levels, or risk 
scores. 

• Instant Revocation: 
Tokens can be instantly invalidated in response to security incidents or policy 
updates, eliminating reliance on token expiry periods. 

• Lightweight Binary Format: 
The binary structure reduces parsing overhead, enabling high-speed evaluation 
suitable for intensive, real-time interactions. 

Continuous Authorization Evaluation 

RTA ensures ongoing authorization accuracy through continuous context evaluation: 

• On-Demand Policy Checks: 
Each significant action undergoes real-time verification against the latest security 
policies via a PDP. 
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• Adaptive Privilege Management: 
Privileges dynamically adjust or are revoked instantly in response to evolving 
conditions or risk profiles, ensuring up-to-date compliance. 

Optimized Transport via QUIC/HTTP/3 

To maintain authorization at the speed required by modern AI systems, RTA employs 
QUIC/HTTP/3: 

• Rapid Connection Establishment: 
QUIC’s 0-RTT handshake dramatically reduces latency for session initiation. 

• Efficient Multiplexing: 
QUIC’s independent multiplexed streams eliminate delays caused by head-of-line 
blocking, ensuring parallel authorization evaluations. 

• Seamless Network Transition: 
QUIC’s inherent connection migration capability maintains continuous authorization 
sessions even during network changes (e.g., switching from Wi-Fi to cellular). 

Robust Event-Driven Security Architecture 

RTA uses event-driven channels to provide real-time security updates: 

• Real-Time Event Delivery: 
Persistent QUIC-based channels push immediate security context updates, greatly 
reducing latency compared to polling-based methods. 

• Distributed Updates: 
Events such as policy revocations or updates propagate instantly across all 
connected systems through integration with distributed event brokers. 

Seamless Integration with Identity Providers 

RTA complements existing OAuth/OIDC infrastructure by enhancing initial authentication 
flows: 

• Hybrid OAuth Integration: 
Retains familiar OAuth 2.0 workflows while dynamically upgrading sessions via 
RTATokens after authentication. 

• Real-Time Identity Signals: 
Continuously incorporates external security signals (e.g., CAEP events) from Identity 
Providers, ensuring that token state consistently aligns with real-time user status 
and context. 

RealTimeAuth (RTA) represents a significant evolution in authorization protocols, 
addressing the millisecond-level, continuous demands of modern AI applications by 
combining dynamic token management, persistent low-latency communication, and robust, 
event-driven security mechanisms. 
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6. Real-Time Authorization: How IdPs, RTA, and AI Agents Interact 

The overall design is composed of three distinct parts that work together to deliver 
dynamic, continuous authorization: 

6.1 External Identity Providers (IdPs) 

External Identity Providers, such as Azure AD, Okta, and Google, serve as the initial 
authentication gateway. They verify user identities through standard OAuth/OIDC 
protocols, enabling secure identity proofing and consent management. 

Key Responsibilities: 

• Initial Authentication: 
OAuth/OIDC login, identity verification, and consent management. 

• Event Emission: 
CAEP-compliant security event notifications (via HTTPS POST). 

6.2 RealTimeAuth (RTA) Framework 

The RealTimeAuth (RTA) Framework provides dynamic, continuous authorization. After 
initial authentication by external IdPs, it manages RTATokens in real time and ensures 
immediate enforcement of security policies. 

Key Responsibilities: 

• Token Management: 

– Validate OAuth tokens and exchange them for dynamic RTATokens. 
 

– Continuously evaluate and update token context based on live policy 
changes. 

• Policy Enforcement: 
Integrate with Policy Decision Points (PDP) for real-time security validation. 

• Event Handling & CAEP Compatibility: 

– Dedicated Webhook Receiver for receiving CAEP events over HTTPS. 
 

– Integrated QUIC Client supporting low-latency CAEP event delivery. 
 

– Internal Event Broker (e.g., Redis Pub/Sub, SSE) for rapid policy and 
revocation event distribution. 
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6.3 AI-Driven Co-Pilots/Agent Orchestration (Clients via RTASDK) 

AI-driven co-pilots and agent orchestration systems utilize the RTASDK (QUIC) for 
seamless integration with the RTA Framework. This SDK simplifies maintaining 
continuous, real-time authorization sessions. 

Key Responsibilities: 

• Initial OAuth Authentication: 
Perform standard OAuth authentication with external IdPs. 

• RTAToken Acquisition: 
Obtain continuously validated RTATokens from the RTA Framework using the 
RTASDK. 

• Persistent QUIC Sessions: 
Utilize the RTASDK to maintain real-time, low-latency QUIC connections with RTA. 

• Instantaneous Adaptation: 
React immediately to real-time policy changes, revocations, or scope adjustments 
delivered via the RTASDK. 

 

7. High-Level Flow of RealTimeAuth (RTA) 

RealTimeAuth (RTA) streamlines continuous, dynamic authorization by building on 
existing OAuth flows and introducing a specialized RTA Custom Grant Type that enables 
seamless token exchange and continuous evaluation of privileges. Here’s a detailed 
overview of how this enhanced flow operates in dynamic, AI-driven environments: 

7.1 Initial Authentication with External IdP 

The user authenticates using a standard OAuth 2.0/OIDC flow with an external Identity 
Provider (IdP). An OAuth token is issued by the IdP, establishing the user’s identity and 
initial permissions. 

7.2 Token Exchange via RTA Custom Grant Type 

Upon receiving the IdP-issued OAuth token, the AI Co-Pilot or orchestration layer initiates a 
token exchange using the specialized RTA Custom Grant Type 
(urn:ietf:params:oauth:grant-type:rta_token_exchange) when interacting with the 
RTA server. This specialized grant includes the original OAuth token issued by the external 
IdP, agent-specific metadata for precise auditability, and a nonce or cryptographic 
challenge for replay attack protection. The RTA server validates the incoming OAuth token 
through introspection with the external IdP and issues a dynamic RTAToken that binds 
directly to the agent’s context and QUIC session. 
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7.3 Token Binding and Persistent QUIC Session Establishment 

The dynamically issued RTAToken is tightly bound to a persistent QUIC session established 
between the AI agent and the RTA server. This cryptographic binding provides enhanced 
security against replay attacks and ensures that the token continuously reflects the agent’s 
current context and security posture. 

7.4 Continuous Authorization Evaluation 

Each significant action performed by AI agents triggers an immediate policy check via the 
integrated Policy Decision Point (PDP). Real-time policy evaluation ensures that tokens 
remain consistently aligned with current permissions, compliance requirements, and risk 
profiles. 

7.5 Real-Time, Event-Driven Updates and Revocation 

The RTA framework continuously listens for security events—such as revocations or policy 
changes—delivered through persistent QUIC-based channels and internal Event Brokers 
(e.g., Redis Pub/Sub, Server-Sent Events). Upon receiving events, the RTA server instantly 
updates or revokes RTATokens across all active sessions, ensuring real-time enforcement. 

7.6 Seamless Integration with Backend Services 

AI co-pilots and orchestration layers, empowered by continuously validated RTATokens, 
communicate securely with backend services through the established QUIC channels. Real-
time authorization is maintained, and unauthorized actions are proactively blocked. 

By combining initial OAuth authentication with continuous real-time evaluation, token 
binding to persistent QUIC sessions, and an event-driven update mechanism, 
RealTimeAuth (RTA) delivers a robust, low-latency solution tailored for the dynamic 
demands of modern, AI-driven multi-agent environments. 

8. RealTimeAuth (RTA) High-Level Design and Flow 

Below is the high-level design and flow of RealTimeAuth (RTA) in an AI-driven 
environment. This design starts with a Web Portal user login and then shows how the 
authentication flows from the AI Co-Pilot through to the AI Agents, with the RTA Server 
managing dynamic, continuous authorization in real time. The diagram also illustrates the 
integration of the RTA Server with an external Identity Provider (IdP) for token validation, 
and with an Event Broker/Policy Decision Point (PDP) to perform real-time policy checks. 

RTA Sequence Diagram 
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8.1 Diagram Overview 
• User Login: Initiated through a Web Portal. 

• Token Exchange: The AI Co-Pilot transfers the OAuth token to the AI Agents, which 
then exchange it for delegated RTATokens. 

• Persistent Connection: AI Agents establish a persistent QUIC session with the RTA 
Server. 

• Real-Time Policy Updates: The RTA Server receives immediate updates from an 
external Event Broker and pushes these to connected AI Agents. 

• Continuous Authorization: Agents use updated tokens for real-time actions. 

• Response Aggregation: The AI Co-Pilot aggregates agent responses and presents 
the final output via the Web Portal. 

8.2 Flow Explanation 

8.2.1 User Authentication via Web Portal 

• Login Process: 
The user logs in via a standard OAuth/OIDC flow. 

• Token Issuance: 
An external Identity Provider (IdP) issues an OAuth token, which the Web Portal 
forwards to the AI Co-Pilot. 

8.2.2 Delegated RTAToken Exchange 

• Token Relay: 
The AI Co-Pilot sends the OAuth token to each AI Agent. 

• Exchange Process: 
Each AI Agent exchanges the OAuth token for a unique, delegated RTAToken with 
the RTA Server. 

• Token Validation: 
The RTA Server validates the OAuth token via introspection with the IdP. 
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• Auditability: 
Agent-specific metadata is embedded in each RTAToken for audit purposes. 

8.2.3 Persistent QUIC Session Establishment 

• Connection Setup: 
Upon token issuance, each AI Agent establishes a persistent QUIC connection with 
the RTA Server. 

• Immediate Communication: 
This persistent connection allows for bi-directional, real-time communication. 

8.2.4 Event-Driven Policy Updates via Event Broker 

• Real-Time Subscription: 
The RTA Server subscribes to an Event Broker to listen for external events. 

• Event Sources: 

– IdP Revocation: Events such as IdP revocation via CAEP. 
 

– Policy Changes: Policy updates from a Policy Decision Point (PDP). 

• Internal Synchronization: 
These events ensure that the internal context of the RTA Server remains updated in 
real time. 

8.2.5 Instantaneous Policy Update Push (RTA → AI Agents) 

• Immediate Updates: 
When the RTA Server receives an external event signaling a policy or state change, it 
pushes updates directly to all affected AI Agents. 

• Continuous Delivery: 
Updates are sent via the established QUIC sessions regardless of whether the agents 
are actively sending requests. 

8.2.6 Continuous Real-Time Authorization 

• Action Execution: 
AI Agents perform actions using their freshly updated RTATokens. 

• Real-Time Evaluation: 
The RTA Server continuously evaluates and authorizes each request, ensuring the 
tokens reflect the current state of policies. 

8.2.7 Aggregated Response Delivery 

• Response Flow: 
AI Agents send individual responses back to the AI Co-Pilot. 

• Final Output: 
The AI Co-Pilot aggregates the responses and presents the final result to the user 
through the Web Portal. 
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9. Dynamic Authorization Tokens 

RTATokens are purpose-built dynamic tokens used within the RealTimeAuth (RTA) 
framework to enable continuous, real-time authorization for AI-driven multi-agent 
environments. Unlike traditional static tokens (such as JWTs), RTATokens are context-
bound, continuously evaluated, and capable of instantaneous revocation or update. 

9.1 What are RTATokens? 
RTA Sequence Diagram 

 

RTATokens are stateful authorization tokens explicitly designed for dynamic, continuously 
changing contexts. They do not rely on embedded static claims for offline validation. 
Instead, every RTAToken must always be revalidated against the current real-time 
authorization state managed by the RTA Server. 

Core Properties: 

• Dynamically Evaluated: 
RTATokens are validated at every request against the current, up-to-the-second 
policy context. 

• Instantly Revocable: 
Policy updates or revocation events instantly invalidate outdated tokens, removing 
reliance on cumbersome denylist approaches. 

• Context Bound: 
Each RTAToken includes metadata (e.g., a ContextHash) that directly reflects the 
current policy or security context—such as user risk level, geographic location, or 
compliance status. Changes to any contextual attribute trigger immediate token 
invalidation or updates. 
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9.2 Why Binary RTATokens? Efficiency and Performance 

Unlike JSON Web Tokens (JWTs)—typically encoded as text and parsed from base64-
encoded JSON—RTATokens use a structured binary format. This design provides several 
crucial efficiency benefits: 

Efficiency Advantages of Binary Encoding: 

• Faster Parsing: 
Binary tokens eliminate JSON parsing overhead. Fixed-size fields ensure rapid 
indexing and extraction without the complexity of parsing variable-length strings or 
JSON structures. 

• Reduced Network Overhead: 
Binary encoding results in significantly smaller token sizes compared to text-based 
tokens. The reduced payload size leads directly to lower latency and improved 
throughput, which is essential for high-frequency AI interactions. 

• Improved Security and Reliability: 
Fixed binary structures minimize parsing errors and reduce the risk of injection 
attacks common with text-based formats. 

9.3 RTAToken Binary Structure Explained 

Below is a representative structure of an RTAToken, highlighting its compact, binary-
encoded components: 

RTAToken 
TokenHeader 
(8 bytes) 

SessionID 
(16 bytes) 

ContextHash 
(32 bytes) 

Timestamp 
(8 bytes) 

Signature 
(32 bytes) 

      

 

Field Size Purpose and Benefits 

TokenHeader 8 bytes Contains version and flag information for quick parsing. 

SessionID 16 
bytes 

Uniquely binds the token to a specific QUIC session, preventing 
replay attacks. 

ContextHash 32 
bytes 

Represents the current policy context. Any change invalidates 
prior tokens immediately. 

Timestamp 8 bytes Embeds issuance time, preventing token replay or reuse 
beyond its freshness window. 

Signature 32 
bytes 

Cryptographic signature (e.g., Ed25519) ensuring token 
authenticity and integrity. 

This carefully optimized binary structure ensures rapid validation, minimal parsing 
overhead, and secure operations. 
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9.4 RTATokens vs. JWT: Key Comparison 

Here’s a concise comparison highlighting why RTATokens outperform traditional JWTs in 
dynamic, multi-agent scenarios: 

Aspect Traditional JWT Tokens RTATokens (Binary) 

Validation 
Model 

Static, offline validation using 
embedded claims 

Dynamic, real-time validation 
against live server context 

Revocation 
Handling 

Complex denylist or long expiry 
times 

Instantaneous global revocation 
via context updates 

Context 
Sensitivity 

Static claims, no context-based 
automatic revocation 

Context-bound; auto-invalidation 
upon context changes 

Token Format Text-based (JSON/Base64), 
larger size, slower parsing 

Binary format, smaller size, faster 
parsing & processing 

Security Higher risk of parsing-related 
vulnerabilities 

Secure, fixed-size binary fields 
reduce parsing risks 

Performance 
Impact 

Higher latency due to parsing 
overhead 

 

10. Event-Driven Security: Real-Time Enforcement with CAEP and RTA 

10.1 Integrating CAEP Events via Shared Signals Framework (SSF) and QUIC 
RTA Event Flow 

RTA Event Flow 

External Identity Providers (IdPs) and Policy Decision Points (PDPs) (e.g., Okta, Azure AD, 
Google) emit standardized Security Event Tokens (SETs) via the Shared Signals Framework 
(SSF). RTA handles these events using two complementary mechanisms: 

• SSF-Compatible HTTPS Endpoint: 
RTA exposes a dedicated endpoint (e.g., 
https://events.realtimeauth.empowerid.com/caep) to receive CAEP events via 
HTTPS POST. This endpoint securely receives and validates incoming events. 

• QUIC Client Integration: 
A QUIC Client, integrated directly at the PDP/IdP level, ensures that CAEP events are 
transmitted with low latency and high reliability. This client establishes persistent 
QUIC connections to RTA, enabling real-time, bidirectional communication that 
outperforms conventional HTTPS. 

Event Flow: - Emission: 
External IdPs/PDPs send CAEP events using either HTTPS POST or direct QUIC 
transmissions. - Reception: 
The SSF-compatible endpoint and integrated QUIC Client securely receive, validate, and 

https://www.okta.com/
https://azure.microsoft.com/en-us/services/active-directory/
https://about.google/
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forward these events. - Internal Publishing: 
Validated events are immediately published to an internal real-time Event Hub (e.g., Kafka, 
Redis Pub/Sub, Azure Event Hub) for further processing. 

 

10.2 RTA’s Real-Time Policy Enforcement 

When CAEP events are received from the internal Event Hub via HTTPS or QUIC channels, 
RTA immediately enforces security changes by: 

• Updating the Policy Context: 
RTA recalculates its internal policy context and updates the embedded ContextHash 
in all active RTATokens, reflecting the most current security information. 

• Instant Token Invalidation: 
Tokens carrying outdated ContextHashes are invalidated immediately, ensuring that 
any new policy changes or revocation events are enforced without delay. 

• Immediate Agent Notification: 
Using persistent QUIC connections, RTA proactively pushes these updated policies 
to all connected AI agents—even if they are not actively sending requests—
achieving zero-wait enforcement. 

 

10.3 Complementing CAEP with Enhanced RTA Integration 

The combination of CAEP and RTA, strengthened by QUIC Client integration, provides 
robust real-time security enforcement: 

• CAEP: 
Facilitates standardized external communication of security events from IdPs and 
PDPs. 

• RTA with QUIC Integration: 
Ensures immediate enforcement of CAEP events by dynamically updating policy 
contexts and instantly broadcasting changes to all AI agents via low-latency QUIC 
connections. 

• Overall Benefit: 
This integrated approach guarantees comprehensive, real-time security by bridging 
standardized event communication with instantaneous policy enforcement across 
dynamic, AI-driven environments. 
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10.4 Broadcasting Events to Multiple AI Agents 

RTA efficiently disseminates security policy updates and context changes across all 
connected AI agents: 

• Persistent QUIC Connections: 
AI agents maintain always-on QUIC connections with RTA, enabling prompt, real-
time communication. 

• Instant Policy Synchronization: 
Upon receipt of CAEP events, RTA immediately broadcasts the updated policies 
through these connections. 

• Zero-Wait Enforcement: 
AI agents instantly adapt their operations based on the enforced policies, 
eliminating delays associated with manual checks or periodic synchronization. 

11. Low-Latency Transport via QUIC/HTTP/3 and Its Advantages Over 
WebSockets and HTTP/2 

RTA leverages the advanced features of QUIC/HTTP/3 to deliver dynamic, continuous 
authorization in high-frequency, AI-driven environments. The use of HTTP/3 brings 
several key improvements compared to traditional transport protocols such as WebSockets 
and HTTP/2. 

11.1 Advantages of HTTP/3 (QUIC) 
• Rapid Session Establishment: 

HTTP/3 utilizes a 0-RTT handshake, drastically reducing connection setup time. 
This near-instant session initiation is critical for environments where AI agents 
require immediate authorization and token updates. 

• Multiplexed Streams Without Head-of-Line Blocking: 
Unlike HTTP/2—which, although capable of multiplexing, can suffer from head-of-
line blocking—HTTP/3 allows simultaneous independent streams. This prevents 
any single stream from delaying others, ensuring smooth, concurrent processing of 
authorization checks and token updates. 

• Seamless Connection Migration: 
QUIC supports connection migration across different network interfaces (for 
example, switching between Wi-Fi and cellular) without dropping the connection or 
requiring a new handshake. This enables RTA to maintain persistent sessions even 
when network conditions change, ensuring continuous real-time updates. 

• Enhanced Security and Reduced Overhead: 
HTTP/3 integrates TLS 1.3 directly into its transport layer, reducing overhead and 
improving security by minimizing round-trip times. The streamlined security model 
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and built-in encryption contribute to a more resilient and efficient authorization 
system. 

11.2 Comparison with WebSockets and HTTP/2 
Feature WebSockets HTTP/2 HTTP/3 (QUIC) 

Connection 
Setup 

Requires a separate 
handshake over 
HTTP/TCP, adding 
latency. 

Uses an HTTP/2 
handshake but is still 
subject to TCP’s 
limitations. 

0-RTT handshake 
significantly reduces 
connection setup 
latency. 

Multiplexing Limited multiplexing; 
prone to blocking if 
many connections 
compete. 

Multiplexing 
available, but can 
suffer from head-of-
line blocking. 

True multiplexing 
without head-of-line 
blocking. 

Connection 
Migration 

Not natively 
supported; requires 
reconnection. 

Limited support for 
migration; may 
disrupt ongoing 
streams. 

Seamless migration 
across networks 
maintains session 
continuity. 

Security 
Integration 

Secured using TLS 
over TCP. 

Secured via TLS with 
additional overhead 
due to TCP 
inefficiencies. 

Integrated TLS 1.3 
within the transport 
layer minimizes 
overhead. 

Performance 
Impact 

Additional overhead 
leads to increased 
latency in high-
frequency use. 

Improved over TCP 
but still impacted by 
TCP’s inherent 
inefficiencies. 

Minimal latency, 
optimized for real-time 
interactions in dynamic 
environments. 

By utilizing QUIC/HTTP/3, RTA achieves minimal latency and robust, persistent 
communication channels, ensuring that real-time authorization updates are delivered 
seamlessly. This makes it a superior choice over WebSockets and HTTP/2 for AI-driven 
environments where continuous, low-latency performance is critical. 

12. RealTimeAuth (RTA) Uses Rust for Millisecond Latency and C++-
Level Efficiency 

RealTimeAuth (RTA) leverages Rust for its powerful combination of millisecond-level 
latency, C++-like performance, memory safety, and secure, scalable concurrency—ideal for 
real-time, continuous authorization in high-performance, AI-driven environments. 

12.1 Millisecond-Level Latency 
• Zero-Overhead Abstractions: 

Rust’s zero-overhead abstractions enable authorization decisions within 
milliseconds. 
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• Rapid Enforcement: 
Low-latency is critical for the rapid, real-time security enforcement required in 
dynamic AI scenarios. 

12.2 C++-Level Performance with Memory Safety 
• High-Performance Computing: 

Rust matches C++ performance without incurring typical C++ vulnerabilities such as 
buffer overflows or memory leaks. 

• Predictable Memory Management: 
Rust’s ownership model provides predictable memory management, enhancing 
system reliability and security. 

12.3 High-Concurrency QUIC Communication 
• Efficient Asynchronous Ecosystem: 

Utilizing Rust’s asynchronous ecosystem (e.g., Tokio) and QUIC libraries (e.g., 
Quinn), RTA can efficiently manage thousands of simultaneous QUIC connections. 

• Seamless Scalability: 
RTA scales seamlessly, ensuring stable performance even as the number of 
connected AI agents grows. 

12.4 Lightweight, Secure Cryptography 
• Robust Cryptographic Libraries: 

Rust’s secure cryptographic libraries (such as Ring and RustCrypto) enable efficient 
cryptographic operations for RTAToken signing and verification. 

• Low-Latency Security: 
Rapid token signing and verification maintain minimal latency while ensuring 
maximum security. 

Using Rust, RealTimeAuth (RTA) achieves unmatched performance, memory safety, 
concurrency, and cryptographic security—making it perfectly suited to meet the real-time 
authorization demands of modern, multi-agent AI environments. 


